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In previous papers, Antunes and co-workers developed a theoretical model for nonlinear planar
motions*motions X(t) taking place in one single direction*of rotors under #uid con"nement
using simpli"ed #ow equations on the gap-averaged #uctuating quantities. The nonlinear
solution obtained was shown to be consistent with a linearized solution for the same problem.
Also, it displayed an encouraging qualitative agreement between the nonlinear theory and
preliminary experimental results. Following a similar approach, the nonlinear theoretical
model is here extended to cope with orbital rotor motions*motions X(t) and >(t) taking place
in two di!erent orthogonal directions*by developing an exact formulation for the two-
dimensional dynamic #ow forces. Numerical simulations of the nonlinear rotor}#ow coupled
system are presented and compared with the linearized model. These yield similar results when
the eccentricity and the spinning velocity are low. However, if such conditions are not met, the
qualitative dynamics stemming from the linearized and nonlinear models may be quite distinct.
Preliminary experimental results also indicate that the nonlinear #ow model leads to better
predictions of the rotor dynamics when the eccentricity is signi"cant, when approaching
instability, and for linearly unstable regimes. ( 2000 Academic Press
1. INTRODUCTION

VIBRATION OF ROTATING SHAFTS subjected to #uid}structure interaction is a physical problem
of both theoretical signi"cance and practical importance, as convincingly demonstrated in
many references [see, for instance, books by Vance (1988) and Goodwin (1989)]. This
problem has been studied for di!erent gap geometries, ranging from bearing con"gurations
to pump systems. Here we are interested in the rotor dynamics under moderate #uid
con"nement (with reduced gap d"H/R of about 0)1, where H is the annular #uid gap and
R is the rotor radius).

Rotor dynamics under moderate #uid con"nement have been studied since Black (1969),
Fritz (1970) and Hirs (1973). Further relevant work was presented by several authors
including Ramsden et al. (1974, 1975), Childs (1983), Nelson (1985) and Nordmann et al.
(1989). A thorough analysis using linearized #ow equations on the gap-averaged #uctuating
quantities was performed by Grunenwald et al. (1991), Axisa & Antunes (1992), Grunen-
wald (1994) and Antunes et al. (1996).
0889}9746/00/070635#34 $35.00/0 ( 2000 Academic Press
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Recently, a theoretical formulation for the fully nonlinear planar motions showed an
encouragingly better agreement with experimental results (Antunes et al. 1999). The same
assumptions and methods will be used to develop a theoretical model for nonlinear orbital
motions of rotors. The di$cult integrations which arise were conveniently solved here by
using basic complex analysis techniques.

2. FLOW FORMULATION

Consider the geometry of the #uid annulus represented in Figure 1, where h and t are,
respectively, the azimuthal angle and time, R is the shaft radius and u (h, t) is the gap-
averaged tangential #ow velocity. The annular gap depth h (h, t) is very well approximated
by

h (h, t)"H!X(t) cos h!>(t) sin h, (1)

where H is the average annular gap.
The following simplifying assumptions will be adopted concerning the #ow "eld [see

Antunes et al. (1997)]: (i) the #ow is modelled as being two-dimensional and incompress-
ible; (ii) the radial gradients in the velocity and pressure "elds are neglected; (iii) the
dissipative e!ects due to turbulent shear stresses at the walls are modelled using semiempiri-
cal loss-of-head terms.

With these assumptions, one can obtain the continuity equation for incompressible #ow
and the momentum equation (projected in the tangential direction),
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where o is the #uid density and p (h, t) is the gap-averaged pressure.
Figure 1. Geometry of the #uid annulus.
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The shear stresses at the rotor and stator walls, in equation (3), are given by
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where f
r

and f
s

are empirical friction coe$cients, which depend on the #ow Reynolds
number and on the roughness of the walls.

Among several empirical correlations, those suggested by Wend (1933) and Hirs (1973)
are formulated as

f"a (Re)b, (5)

where coe$cients a and b are obtained from experiments. As given above, the shear stresses
change in a quadratic way with the #ow velocity and always oppose the #ow*hence the
moduli in equations (4).
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This simpli"cation is adequate except in quite extreme conditions, such as when the
roughnesses of the rotor and the stator walls are quite di!erent (Grunenwald et al. 1996).
One can observe the corresponding normalized skin-friction stresses as a function of the
reduced #ow velocity in Figure 2.

In the following, we will be interested in the dynamic #ow forces
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Figure 2. Skin-friction stresses as a function of the reduced #ow velocity (with f
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where ¸ is the immersed length of the rotor. Equivalently, by integration by parts, one can
express equations (7) in a more convenient way as
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3. SOLUTION OF THE FLOW EQUATIONS

From equation (2), the velocity "eld is obtained directly as

u (h, t)"
R (XQ (t) sin h!>Q (t) cos h#C (t))

H!X (t) cos h!> (t) sin h
, (9)

where C (t) is an integration constant, which can be shown to be proportional to the average
bulk-#ow velocity.

Considering the following forms of equation (3):
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and utilizing equations (6), (8) and (9), one can deduce

F
X

(t)"!oR2¸IX
1
(t)!oR¸IX

2
(t)!R2¸IX

3
(t), (13)

F
Y
(t)"oR2¸IY

1
(t)#oR¸IY

2
(t)#R2¸IY

3
(t), (14)

0"oI
1
(t)#

o
R

I
2
(t)#I

3
(t), (15)

where

IX
1
(t),P

2n

0

L (hu)

hLt
sin hdh, IX

2
(t),P

2n

0

L(hu2 )

hLh
sin h dh, (16, 17)

IX
3
(t),P

2n

0

(q
s
#q

r
)

h
sin hdh, (18)

IY
1
(t),P

2n

0

L (hu)

hLt
cos h dh, IY

2
(t),P

2n

0

L (hu2)

hLh
cos hdh, (19, 20)

IY
3
(t),P

2n

0

(q
s
#q

r
)

h
cos h dh, (21)

I
1
(t),P

2n

0

L (hu)

hLt
dh , I

2
(t),P

2n

0

L (hu2)

hLh
dh, I

3
(t),P

2n

0

(q
s
#q

r
)

h
dh. (22, 23, 24)



ORBITAL MOTIONS OF ROTORS IN CONFINED FLUID 639
The integral factors IX
3
(t), IY

3
(t) and I

3
(t) were computed by using the linear branch of the

plot q
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r
, as a function of u (h, t), which is formulated in equation (6):
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Indeed, transitions between the branches of equation (6) cannot be decided a priori, as they
depend on the spinning velocity ) and rotor motion, from which stems the velocity "eld
u (h, t). This leads to a nonlinear model [equations (13) and (14)] which does not have
a dissipative term when )"0. This problem has been discussed by Antunes et al. (1999).

All the previous integral factors are expanded in Appendix A. The expressions
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referred to therein are presented in Appendix B. These integrals were computed as functions
of the parameters H, X (t) and > (t) using the residue theorem from complex analysis. This
approach proved to be more e!ective than direct integration (in the real domain) used in the
previous work (Antunes et al. 1999).

Letting >">Q ">G "0, equations (13)}(15) collapse into
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Equations (27) and (28) can be found in Antunes et al. (1999) and they describe
a nonlinear planar -ow force, F

X
in a similar geometry. It was shown that F

X
is an extension

of the linearized force for a centred or eccentric rotor.
On the other hand, analysing the asymptotic behaviour of equations (13)}(15), when

XQ "XG ">Q ">G "0, one can obtain
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which are solutions of the steady #ow we can "nd in Antunes et al. (1996). Note that FM AM and
FM BM represent the steady #ow forces, respectively, in directions AM "Xi#>j and
BM ">i!Xj.

From these arguments, the nonlinear #ow equations (13)}(15), seem quite plausible. Note
that a coupling between the rotor motions X (t), > (t) and the auxiliary #ow variable C (t) is
unavoidable when frictional e!ects are not neglected. Physically, equation (15) or equation
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(28) can be related to delay e!ects of the #ow responses to rotor motions, which depend on
frictional phenomena. This issue will be addressed in detail elsewhere (Moreira et al. 2000)

4. ANALYSIS OF THE COUPLED SYSTEM

The motion equations of the rotor}#ow coupled system read
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given by the nonlinear #uidelastic forces (13) and (14), together with equation (15) which is
necessary to close the problem. Equations (13)}(15), (29) and (30) can be expressed as
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or equivalently as a system of "ve nonlinear "rst-order coupled di!erential equations.

5. SIMULATION OF THE ORBITAL NONLINEAR MOTION

The "ve nonlinear "rst-order coupled di!erential equations were solved using an explicit
algorithm of the Runge}Kutta type, with an error-controlled time-step based on the fourth-
and "fth-order approximations (Press et al. 1992; Shampine 1994).

When the rotor eccentricity and the spinning velocity are low (e.g. the linear simplifying
assumptions are ful"lled), the nonlinear numerical simulations yield similar results to those
predicted by linear theory, while di!erent kinds of instability phenomena arise only at
eccentric con"gurations. In order to compare eccentric nonlinear numerical simulations
with the Grunenwald et al. (1996) eccentric results, the speci"c static eccentricity (at 0 r.p.m.)
of 60% was assumed.

So, the numerical simulations presented, are based on the signi"cant eccentric con"gura-
tions referred, which were labelled &&eccentric con,guration A'' and &&eccentric con,guration
B'' in the experiments (using water) performed by Grunenwald et al. (1996). The signi"cant
parameters are shown in Table 1. Notice that Con"guration B involves more than double
the reduced gap d compared with Con"guration A.
TABLE 1

Parameters used for simulations

Eccentric con"guration A B

¸ (rotor length, m) 0)250 0)250
R (rotor radius, m) 0)0470 0)0435
H (annular gap, m) 0)0032 0)0067
d"H/R (reduced gap) 0)068 0)154
e (static reduced eccentricity) 0)6 0)6
M

45
(structural mass, kg) 6)9 7)0

C
45

(structural damping, N s/m) 86 35
K

45
(structural sti!ness, N/m) 1)8]104 1)6]104

f
45

[structural frequency (1/2n)JK
45
/M

45
(Hz)] 8)1 7)6
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The external excitation used in this simulation was a Gaussian random force, low-pass
"ltered outside the frequency range 0}30 Hz (of interest), of about 0.25 N r.m.s. Two
di!erent types of nonlinear simulations were performed, both of them with a maximum
integration time-step much smaller than 1/(2]f

.!9
), with f

.!9
+30 Hz: (i) in the ,rst type,

the random excitation was applied, in both directions, in the initial 10 of the 15 s of total
simulation, for each simulated spinning velocity; (ii) in the second type, the excitation was
applied in only one direction and during 2 min, for each spinning velocity.

With the "rst set of simulations it was possible to perform the main identi"cation tasks.
Note that 10 s of Gaussian random force, applied with the time-step mentioned, is enough
to excite periodic phenomena in the range from 0)1 to 30 Hz, with the corresponding
resolution and obtain 5 s of free response after excitation to perform identi"cation tasks.

The second set of tests were used to obtain statistically signi"cant data to compute
statistical tests such as histograms of response, values of kurtosis and skewness and
"nally, transfer/coherence function plots for each spinning velocity. Computation of
transfer/coherence functions was performed using averaging techniques over the entire
data set.
Figure 3. Con"guration A: Rotor modes as a function of the spinning velocity; e"0)6, f"0)01.



Figure 4. Con"guration B: Rotor modes as a function of the spinning velocity; e"0)6, f"0)01.
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6. RESULTS AND DISCUSSION

6.1. RESULTS PRESENTED

In Figures 3 and 4 (Con"guration A and Con"guration B, respectively) one can observe the
rotor model frequencies and damping values, as a function of the spinning velocity,
predicted by an improved linear theory. These parameters stem from the "ve eigenvalues,
j
n
"p

n
#iu

n
(one of them, always real), of the linearized equations (31)}(33). In addition to

the forward and backward whirling modes predicted by our previous linearized model,
there is now a zero-frequency mode related to the co-rotating #ow. Because the improved
linear model is rather involved, a separate paper will be presented on this topic shortly
(Moreira et al. 2000).

Note that, because system dynamics are strongly dependent on the rotor eccentricity, the
curves in Figures 3 and 4, were computed using an estimate of the actual eccentricity at each
spinning velocity, which was obtained from nonlinear simulations. This explains the
intricate behaviour of the computed eigenvalues, when compared with our previous studies.

In Figures 5 and 6 (Con"guration A ), and 16 and 17 (Con"guration B), we present
a comparison between the nonlinear numerical simulations, the linear theory and some
published experiments (Grunenwald et al. 1991). These "gures show the identi"ed modal



Figure 5. Comparison of modal frequencies for Con"guration A:*, Linear theory; L, "rst &&mode'' as identi"ed
from nonlinear numerical simulations; ], second &&mode'' as identi"ed from nonlinear numerical simulations; h,

forward mode, experiments; *, Backward mode, experiments; e"0)6.
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frequency u
n
/(2n) and damping p

n
(real part of the corresponding eigenvalue j

n
of the

#ow-structure system) as a function of the rotor velocity. The modal identi"cation was
performed with the ERA method*Eigensystem Realization Algorithm (Juan 1994)*on the
"rst set of nonlinear numerical simulations. The "rst 2 s of the free temporal response data,
after stopping excitation, were used in the time-domain identi"cation procedure.



Figure 6: Comparison of modal damping for Con"guration A:*, Linear theory; L, "rst &&mode'' as identi"ed
from nonlinear numerical simulations; ], second &&mode'' as identi"ed from nonlinear numerical simulations; h,

forward mode, experiments; *, Backward mode, experiments; e"0)6.
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Histograms of displacement responses of the second set of nonlinear simulations are
presented in Figures 7 (Con"guration A ) and 18 (Con"guration B). In these "gures, we can
identify the regimes with non-Gaussian responses, which stem from a nonlinear behaviour.
From Figures 8 and 19, one can see the kurtosis and skewness of the dispacement responses
of the second set of nonlinear numerical simulations. Estimations of these parameters were



Figure 7. Histograms of the X vibratory response for Con"guration A (range from 0 to 1100 r.p.m.).
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Figure 8. Kurtosis and Skewness of displacement of nonlinear simulation responses for Con"guration A.
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Figure 9. Transfer and coherence functions between F
X

(t) and X(t) of nonlinear simulations for Con"guration A
(range from 0 to 500 r.p.m.).
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computed with the following expressions (Press et al. 1992):
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are respectively the mean and variance.
Values of kurtosis and skewness can be used to quantify the deviation from a Gaussian

behaviour. Typically, kurtosis and skewness of a Gaussian distribution are 3 and 0,
respectively.

Transfer functions and coherence functions of the nonlinear numerical simulations,
computed from the second set of nonlinear numerical simulations, can be seen in Figures 9,
10 (Con"guration A) and 20 (Con"guration B). The coherence function between the input
F (t ) and the output X (t) is the real-valued quantity de"ned by

c
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S
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(u)S
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,

where S
FF

(u), S
XX

(u) are respectively the autospectral density functions of signals MF(t)N
and MX(t)N and S

FX
(u) is the cross-spectral density function between signals MF (t)N and

MX(t)N. Note that 04c
FX

(u)41, and c
FX

(u) is maximum for a constant-parameter linear
system, under no-noise conditions. Therefore, low values of coherence (in the absence of
noise) indicate the presence of nonlinearities on the responses (see, for instance, Bendat and
Piersol 1986).

Figures 11, 12 (Con"guration A) and 21 (Con"guration B) show the time histories and
response spectra of the main set of numerical data at several spinning velocities. The
somewhat unusual two-side-frequency response representation was obtained from the
Fourier transforms of the complex signals Z (t)"X (t)#i> (t).

Letting X (t)"cos (u
0
t) and > (t)"sin (u

0
t) one can observe that

DF (X (t)#i> (t)) D"2nd (u!u
0
),

where d is the Dirac delta function. So, DF (X (t)#i> (t)) D is a spike with the same signal of
u

0
. This is the reason that this representation can be useful when one attempts to separate

the whirling forward motions (positive frequencies) from the backward ones (negative
frequencies). The spike at zero frequency is the result of the average eccentricity of the rotor.

In Figures 13, 14 (Con"guration A ) and 22 (Con"guration B), one can see the orbital
motions obtained during the "rst 2 s of free response, after stopping excitation (from the
"rst set of numerical data).

Finally, in Figures 15 and 23 (Con"guration A and B, respectively) one can see the drift as
a function of the spinning velocity, predicted by the nonlinear theory (main set of data).

6.2. DISCUSSION OF CONFIGURATION A

From the identi"ed frequencies and damping values shown in Figures 5 and 6, one can
notice that the nonlinear model agrees with linear theory, in particular, from 0 to 200 r.p.m.



Figure 10. Transfer and coherence functions between F
X
(t) and X(t) of nonlinear simulations for Con"guration A

(range from 600 to 1100 r.p.m.).
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Figure 11. Computed time histories and response spectra for Con"guration A (range from 0 to 500 r.p.m.).
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Figure 12. Computed time histories and response spectra for Con"guration A (range from 600 to 1100 r.p.m.).
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Figure 13. Computed orbital motions for Con"guration A (range from 0 to 500 r.p.m.).
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Figure 14. Computed orbital motions for Con"guration A (range from 600 to 1100 r.p.m.).
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Both models can give acceptable predictions of the experiments in this range, because the
dynamic system displays an almost linear behaviour. This can be observed in the histo-
grams of Figure 7, and numerically asserted from the corresponding values of the kurtosis
and skewness, shown in Figure 8. We recall that a Gaussian behaviour will lead to
a kurtosis of 3 and skewness of 0.

Above this range and below 800 r.p.m. the system becomes linearly unstable. Nonlinear
forces prevail, and so only numerical nonlinear simulations yield results which are similar to
experiments. This can be con"rmed (namely in the identi"ed frequencies) in the range
between 300 and 400 r.p.m. One can observe in Figure 9 a progressive deterioration in the
values of coherence of response, in this range. The severe nonlinear behaviour from 500 to
700 r.p.m. is highlighted by the shape of the histogram plots, in Figure 7, as well as by the
corresponding values of kurtosis in Figure 8.

One can observe a similar evolution of damping between the non-linear numerical
simulations and the experiments in Figure 6. Notice that, although the identi"ed damping is
positive in the range below 500 r.p.m., these are only apparent values, because nonlinear
e!ects prevail after the linear instability arising at 300 r.p.m. Indeed, linear theory and
nonlinear numerical simulations predict instability respectively at 300 and 500 r.p.m.
Experimental instability was observed at about 650 r.p.m.

Note that, after the linear restabilization at 750 r.p.m., the linear and nonlinear models
agree again very well (see Figures 5 and 6). The linear behaviour of the system in this range
is con"rmed by the corresponding histograms of Figure 7, by the values of kurtosis and
skewness in Figure 8 or by the high values of coherence displayed in Figure 10.

The limit cycles obtained in the 500, 600 and 700 r.p.m. range are shown in Figures 11}14,
as well as the stable free responses at lower velocities. Observe that the limit cycles
correspond to forward orbits. Note that, in experiments, this con"guration became unsta-
ble in the forward whirling mode after 650 r.p.m. (Grunenwald et al. 1996). Restabilization at
750 r.p.m. can also be observed in Figures 12 and 14. No experimental dynamic results were
available in this range.

The rotor drift, as a function of the spinning velocity, is shown in Figure 15. For rotors
under moderate #uid con"nement, the drift is mostly due to a Bernoulli e!ect, but is also
a!ected by the dissipative forces. The drift predicted by the nonlinear theory agree
reasonably well with experiments in the range up to 700 r.p.m. (no experimental data is
available beyond 800 r.p.m.). The same type of qualitative behaviour was experimentally
observed by Grunenwald et al. (1996) at di!erent eccentric con"gurations. One should note
that the "nite length of the rotor may signi"cantly a!ect the results, which might account for
the discrepancies on the drift angle. At present, these e!ects are very di$cult to quantify.

6.3. DISCUSSION OF CONFIGURATION B

In Figures 16 and 17, we note again that nonlinear simulations and linear theory agree
reasonably well in the range below 400 r.p.m. Both models give acceptable predictions of
the experimental behaviour, in this range. This accounts for the linear dynamic of system,
which is attested by the histograms in Figure 18, and the values of kurtosis, skewness and
coherence can be observed in Figures 19 and 20, respectively.

Above this range, the nonlinear numerical simulations still yield results which are similar
to experiments, with respect to the identi"ed frequencies, as we can observe in Figure 16.
The identi"ed damping values from the nonlinear simulations are somewhat lower than in
the experiments, as shown in Figure 17. We can also, verify that, from 200 to 400 r.p.m., the
apparent damping values of the forward whirling mode and of the backward whirling mode
are reversed in simulations and experiments. This may be due to three-dimensional #ow



Figure 15. Magnitude and angle of the steady rotor drift for Con"guration A: L, nonlinear simulations; ],
experiments.
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Figure 16. Comparison of modal frequencies for Con"guration B: *, Linear theory; L, "rst &&mode'' as
identi"ed from nonlinear numerical simulations; ], second &&mode'' as identi"ed from nonlinear numerical

simulations; h, forward mode, experiments; *, Backward mode, experiments; e"0)6.
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Figure 17. Comparison of modal damping for Con"guration B:*, Linear theory; L, "rst &&mode'' as identi"ed
from nonlinear numerical simulations; ], second &&mode'' as identi"ed from nonlinear numerical simulations; h,

forward mode, experiments; *, Backward mode, experiments; e"0)6.
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Figure 18. Histograms of the X vibratory response for Con"guration B (range from 0 to 450 r.p.m.).
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Figure 19. Kurtosis and skewness of displacement of nonlinear simulation responses for Con"guration B.
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Figure 20. Transfer and coherence functions between F
X
(t) and X(t) of nonlinear simulations for Con"guration

B (range from 0 to 450 r.p.m.).
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Figure 21. Computed time histories and response spectra for Con"guration B (range from 0 to 450 r.p.m.).
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Figure 22. Computed orbital motions for Con"guration B (range from 0 to 450 r.p.m.).
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Figure 23. Magnitude and angle of the steady rotor drift for Con"guration B: (L, nonlinear simulations).
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e!ects not accounted by the theoretical assumptions of our model. Indeed, Con"guration B
presents a higher reduced gap (dK0)15) than Con"guration A, leading to a higher value of
the ratio H/¸. Therefore, 3-D #ow e!ects are certainly more signi"cant in the experiments
with Con"guration B.

Linear theory and numerical simulations predict instability respectively at 425 and
450 r.p.m., as we can seen in Figure 17. In experiments this con"guration became also
unstable in the backward whirling mode, but at about 500 r.p.m. The nonlinear behaviour
after instability is attested to by the histograms in Figure 18 and by the plots in Figure 21.
Also, we can observe in Figure 22 the backward limit cycle in this range, as predicted by the
nonlinear simulations at 450 r.p.m.

The rotor drift, for this con"guration (Figure 23) and for Con"guration A ( Figure 15)
displays a similar behaviour, between 0 and 500 r.p.m. (before the occurrence of instability).

7. CONCLUSIONS

In a previous paper (Antunes et al. 1999) a theoretical model was developed for nonlinear
planar motions*motions X(t) taking place in one single direction*of rotors under #uid
con"nement using simpli"ed #ow equations on the gap-averaged #uctuating quantities.

Following a similar aproach, the nonlinear theoretical model was here extended to cope
with orbital rotor motions*motions X(t) and >(t) taking place in two di!erent ortogonal
directions, by developing an exact formulation for the two-dimensional dynamic #ow
forces.
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Besides the fact our nonlinear orbital model can predict the rotor drift (and so the
dynamic eccentricity) which strongly governs the system dynamics and whose knowledge is
essential in linear predictions, the results obtained show the following:

(a) The nonlinear model and linear theory agree when the spinning velocity or the
dynamic eccentricity are low enough, e.g. the linear simplifying assumptions are ful"lled.
However, the range in which the system behaves linearly is small (0}200 r.p.m. in both
con"gurations).

(b) In a range of moderate spinning velocities and/or signi"cant dynamic eccentricity
(200}500 r.p.m. in Con"guration A and 200}400 r.p.m. in Con"guration B), our results
suggest that experiments were performed under linear instability, the response being
stabilized by nonlinear e!ects. This fact explains the signi"cant di!erences observed be-
tween experiments and linear theory. In these regimes, the system behaves nonlinearly, and
so only the nonlinear model agrees with experiments, in particular concerning the identi"ed
response frequencies. However, nonlinear numerical simulations lead to a lower apparent
damping values than the experimentally identi"ed. This may be due to three-dimensional
#ow e!ects not accounted for by the theoretical assumptions of our model.

(c) Our nonlinear model is conservative (as a result from the lower damping exhibited).
Instability is predicted at 10}20% lower velocities than the occurrence of experimental
instabilities. Observe that the correct post-stable whirling instabilities (forward or back-
ward limit cycles), were also well predicted by the nonlinear #ow model.

In spite of some anomalous results in the identi"ed damping in Con"guration B, most
probably due to 3-D #ow e!ects mentioned before, one can conclude that our nonlinear
#ow model leads to much better predictions of the rotor dynamics.

Experimental work is currently being done to further assess the validity of the present
nonlinear theory.
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APPENDIX A: INTEGRAL FACTORS

A list is given below, without comment.
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APPENDIX B: AZIMUTHAL INTEGRALS

The azimuthal integrals appearing in Appendix A are given as follows:
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APPENDIX C: NOMENCLATURE

C(t) integration constant
C

45
structural damping

E actual rotor eccentricity: JX2#>2
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0 static rotor eccentricity: JX2
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u(h, t) tangential #ow velocity
X(t),>(t) rotor motions
d reduced gap, H/R
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